
Asynchronous Real-time Multiplayer Game With

Distributed State

Glen Berseth, Ravjot Singh

April 23, 2015

Abstract

Real-time multiplayer games are complex systems that often have a
single point of failure and are not scalable. In this work a prototype
design is created to handle node failure during game simulation. The
client server paradigm is modified to construct a distributed server at each
node. Propagation of gamestate is performed across nodes keeping each
node up to date. Node failure is handled gracefully without noticeable
suspension of gameplay. Using distributed state across nodes also shows
promise in the area of scalability.

1 Introduction

To build an online real-time multiplayer game, there are two popular methods.
One, is peer-to-peer lockstep, which is based on the peer-to-peer architecture. In
this approach, all nodes start in the same initial state and each node broadcast
every move to the all other nodes. The overall performance of the system is
dependent on slower nodes in the system. Moreover, since the nodes use broad-
casts to communicate, the method generates a significant volume of messages.

A second method is based on the client-server architecture, in which the
game is also simulated on a server and each clients sends updates to the server.
The drawbacks of this method is that the server can become a bottleneck to the
system performance and is a single point of failure. From the point of view of
support for this system there needs to be a large investment in infrastructure.
Also, due to additional game simulation load on the server, this approach is not
scalable.

Cheating is serious problem in online games. The gameplay needs to be
fair in order to keep players interested in the game. Cheating can be done by
players in the game sending information to other clients that should not be
possible according to the current game state and invariants on the capabilities
of the players in the game. In the peer-to-peer architecture protecting against
cheating is very difficult as clients send information directly to other clients.
The client-server method handles malicious players by simulating the game
on an authoritative server that verifies updates from clients. In this work the
concept of an authoritative server is extended to a distributed authoritative
server. Then, depending on the semantics of the game a particular authoritative
server will verify propose gamestate update.

1

We propose to construct a distributed client-server model in order to grace-
fully handle fail-stop scenarios. We will use this system to support a simple
computer game of a number of agents moving around in a 3D world called the
gamestate. We assume no limits on bandwidth and have strong constraints
on latency which significantly impacts online game experience [Claypool and
Claypool, 2006].

All online multiplayer systems are best-effort. If we can create a system with
the same responsiveness with fault tolerance then it is a success.

2 Overview of Technology

In this section an overview of online multiplayer systems is given. For a recent
survey of multiplayer online game frameworks we refer the reader to [Yahyavi
and Kemme, 2013]. We also refer the reader to [Alexander and others, 2003] for
information on MMO game design.

2.1 Multiplayer Network Design

To build an online real-time multiplayer game, there are two popular methods.
One, is peer-to-peer lockstep, which is based on the peer-to-peer architecture. A
diagram of the peer-to-peer communication structure is shown in Figure 1(a). In
this approach, all nodes start in the same initial state and each node broadcast
every move to the all other nodes. With nodes communicating directly the
gamestate can not advance until each node’s move is received by every other
node. The overall latency of the system is then dependent on the slowest node
in the system. This system is also not tolerant to faulty nodes, as each node will
wait and decide themselves if a node has failed. Since the nodes use broadcasts
to communicate, the method generates a significant volume of messages.

To achieve more real-time simulation, systems switched to a client-server
model (see Figure 1(b)) [Coleman and Cotton, 1995]. With this model the
gamestate is stored on a server and clients send updates to the server. This
model reduces latency, for each client the latency is determined by the con-
nection between that client and the server. However, this model is still too
slow for real-time online multiplayer games, which lead to the introduction of
client-side prediction [Bernier, 2001]. Simply put, client-side prediction allows
the client to simulate its own version of the game (sending the results to the
server) but the server can still step in and override the client’s gamestate. This
creates complexity in handling server overrides on clients smoothly (not just in
code but also in animation and audio). Another reason for this model to gain
traction was the ability to handle malicious clients by validating all actions on
the server.

The system designed in this work uses parts from both the peer-to-peer
model and the client-server model. The features of each method that we want
to incorporate are:

1. The client-server model tends to have less latency

2. The client-server model supports clients joining mid game

3. The client-server model is less susceptible to cheating/malicious clients

2

Peer-to-Peer Client-Server

Client

Client Client

Client Client

Client Client

Client

Server

(a) (b)

Figure 1: Two mutiplayer game networking models. The model on the left (a)
is a peer-to-peer model where every client sends updates directly to ever other
client in the game. The second model (b) is a client-server model. In this model
all of the clients send updates to the server and the server send updates out to
the clients.

4. The peer-to-peer model is more fault tolerant

5. the peer-to-peer model has distributed state

As in many multiplayer game networking systems, asynchronous communi-
cation is used. This is necessary to preserve the real-time nature of a game.
Packet loss is considered not significant as a new packet with more up-to-date
information will be sent soon after the lost packet.

3 Methodology

This section outlines our system design to overcome the facilitate distributed
state synchronization. We propose a distributed server model (see Figure 2(b))
to enable graceful failure handling in our system. In this model, clients are
paired with servers that run on the same machine. This arrangement results
in a fate sharing between client server pairs. Paired servers validate actions
performed by corresponding clients. If the server finds the action valid, the
action of broadcast by the server to other nodes. The following subsections will
discuss each component in the proposed architecture in detail.

3.1 The Client

In general, the client provides an interface to the user/player. Through this
interface a player can give commands to their character (referred to as agent) in
the game. The client simulates a local version of the game, where the player’s
commands are executed.

Each client in the system is paired with a server (called a localServer) which
acts as a proxy to all distributed servers in the system. The state of a client’s
agent is forwarded to the localServer periodically.

3

(a) (b)

Figure 2: Figure (a) shows servers interacting with activityserver and kvser-
vice. In this model all of the servers periodically update their entry in the
kvservice and the activityserver periodically publishes a list of online servers
in the kvservice. The model in figure (b) shows node-node communication in
general.

3.2 The (Local) Server

The localServer also simulates its own independent version of the game. The
gamestate at the localServer is guided in coordination with the other nodes
in the system. The purpose of the localServer is not just to reduce message
passing but also to act as a validator/authority over the client’s gamestate and
actions, to prevent malicious clients from propagating invalid information. The
authoritative server for a particular client depends on the event/action being
processed. Any client update is first forwarded to its localServer where it is vali-
dated against the current gamestate of the localServer . The update is published
only if the requested action or update is found valid, else the action is rejected
by the localServer and the client’s state may be overridden by the localServer .

3.3 The Activity Server

The purpose of activityserver is to support the architecture of the system, which
includes allowing a new nodes to join the system and publishing the list of nodes
which are currently active. The activityserver doesn’t perform game simulation,
nor involves itself in game semantic actions.

3.4 The Key-Value Service

The kvservice is a hash table which acts as a communication channel between
different system components. The sole purpose of this service is to provide
the activityserver with a means to publish a list of active nodes. The nodes
periodically update an entry in the kvservice and based on those entry updates,
the activityserver publishes a list of nodes which are currently active. This list is
periodically fetched by the nodes to determine which nodes are currently active.

3.5 ARM Game

This system support an Asynchronous Real-time Multiplayer Game (ARM Game).
It consists of a few standard actions for players (characterized as agents in the

4

game). The first action is a Move which is represented as updateLocation(a, p),
where the first argument represents the agent intended to be moved and the
second argument is the agent’s new location. The other action is Fire which is
represented as fire(p, d), where the first argument represents current position
of the agent firing the shot and the second argument represents the direction in
which the shot is fired.

In order to simulate the game, information is needed on the other agents in
the game. The information corresponding to each agent is called the agentstate.
The attributes of agentstate are shown in Table 1. A collective database storing
agentstate of all agents in the game is known as gamestate.

3.5.1 Protocol and Messaging

All communication is asynchronous without acknowledgements. We use mes-
sages formatted in JSON to facilitate information exchange in the system.

4 Prototype

In this section, we describe the construction and design of the prototype system
we developed. The system is written in Go-lang. For the purpose of testing, the
client is designed to simulate an agent randomly moving and firing in a random
direction periodically. We use a centralized kvservice in our system, which could
be enhanced to distribute over the localServer .

4.1 Data Structures

The system uses a hashmap to store the gamestate where agent names are keys.
The data for each agent is stored as value in the gamestate in the form of a
structure as shown Table 1.

Attribute
name

Type Description

Name string identifier for an agent

Location Vector current location of the agent

TimeStamp int64 vector clock for the agent

LastUpdateTime int64 the last time the node has received a
message from the agent

Direction Vector the velocity of the agent

Table 1: Outline of the data stored by each agent (agentstate).

4.2 System Activation

To start the system, the kvservice and activityserver are executed. The ac-
tivityserver initializes the keys in the kvservice that are used by the nodes to
registered and active in the system.

5

4.3 Registration and Game State Construction

For a new node to join the game, the node has to register itself in the kvservice.
The next step after registration is the gameStateConstruction for the new node.
For this to take place, the new joining node waits for a short period of time to
receive location broadcasts from all, already present, nodes in the system. The
location broadcasts contain the latest location of each agent in the game. Once
the gamestate is constructed, the newly joined node can begin simulating the
game.

4.4 Move Event Processing

For our prototype, each client is responsible for a single agent. After every
gamestate update by the agent, the client sends a position update updateLocation(a, p)
to the localServer . The localServer , based on the position of agent in its games-
tate, verifies the validity of request. Any request that does not satisfy the fol-
lowing relation, will result in the request being ignored and the location agent
overridden by the localServer .

if ((distance/deltaTime) > GameMaxVelocity)

where

distance := (new position of agent) − (previous position of agent),

clientDeltaTime := timeNow − LastUpdateTime,

deltaTime := float64(clientDeltaTime)/1000000000.0,

GameMaxVelocity := predefined maximum velocity for an agent

If the request is valid, the localServer broadcasts the received request to all
other nodes in the system which update their own gamestate as well as forward
the update to their paired clients. The clients will update their gamestate upon
receipt of the message.

4.5 Fire Event Processing

The execution of a fire(p, d) command is very similar to the move action execu-
tion. The client sends a fire request to its localServer . The localServer , based on
its own gamestate, calculates if the shot hits any of the agents in the game. If it
doesn’t, the request is ignored. If the localServer does find a possible shot, the
localServer forwards the request to the particular node paired with the client
controlling that agent. Since that node is expected to have the most updated lo-
cation of the agent being hit it is reasonable to have that node validate the event.
The recipient node using its own gamestate verifies the shot. If the localServer
finds the shot to be unsuccessful, the request is simply ignored. Whereas if the
hit is successful, the recipient node broadcasts a destroy(aj) message to all the
localServers in the system and respawns the agent at a different location.

Processing fire events on a different node is also advantageous in protecting
against malicious clients. The event is first checked on the localServer to verify
that the location of the agent and target agent are correct. This potential shot is
then sent to the node with the most up to date information on the target agent
and verified again. The client for the target agent could try to avoid being shot
by blocking incoming fire events to its localServer . However, this would cause

6

the game state the client and localServer which will result in fire events from
the client being invalidated by other nodes. We use this incentive-based method
to discourage cheating with respect to fire events.

5 Evaluation

The system design is evaluated two ways. Primarily, the methods ability to
handle failure. To cope with the failure gracefully and cause the least amount
of suspension in the gameplay as possible. A secondary goal is to maintain
consistency of the gamestate as more nodes are added to the system.

5.1 Fault Tolerance

The goal of the system was to gracefully cope with failing nodes without intro-
ducing latency. A game system design may choose to pause the processing of the
game until the gamestate becomes consistent again, during this time the players
must wait for the game state to synchronize. Game flow and minimal latency
(as seen from a player of the game) is prioritized for consistency in this project.
In order to reduce latency consistency is sacrificed. When a node fails it could
take a short amount of time to detect this failure as an inactivity. During this
time the agent for that node still exists in the game but is immobile.

Overall the system works as desired for graceful fault tolerance. When a
node fails the agent exists in the gamestate for every node for a short period
(a few seconds) after which all data related to the agent is removed from the
gamestate. A graph of the latency is not shown as there is no latency induced
by a failed node. In fact if a node fails latency should decrease thanks to the
number of messages in the system will decrees.

5.2 Scalability vs Consistency

It is difficult to measure the consistency between each of the nodes. We would
have to employ a large logging system that would take snap shots of the games-
tate at points in time. In order for these snapshots to be effective there would
need to be additional time synchronization across the nodes for comparison.
Instead the relative number of successful shots is used to measure consistency.
A successful shot is one that is initiated by a client, forwarded to the client’s
local server and again forwarded to the proper server for validation. The shot is
successful if the last server agrees with the result of the shot. The occurrence of
successful shot implies that 3 gamestates where at least partial consistent. We
measure the scalability by increasing the number of nodes in the system and
comparing the relative number of fire events that are successful. Figure 3(top)
shows us how well the system’s consistency copes with the number of nodes
in the system. As expected, as the number of nodes increases the number of
successful shots decreases. The decrease in successful shots is a proxy for the
system consistency. This is the result of increased latency and dropped packets
in the system. The total number of possible shots1 is shown in Figure 3(bottom),
exhibiting a linear trend between the number of nodes and the total number of
possible shots. The linear increase in shots tells us that the consistency analysis

1A possible shot is a shot one node believes to be correct.

7

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
Failed shots Successful shots

Agents

10 15 20 25 30 35 40 45 50

0

200

400

600

800

1000

Agents

S
ho

ts

Succesful shots

Failed shots

Total shots

Figure 3: On the top a chart of the relative numbers of successful shots vs failed
shots. As the number of nodes in the system increases the relative number of
successful shots decreases. On the bottom a line plot of the number of possible
shots fired. The number of possible shots increases linearly with the number of
nodes in the system.

was not dependant on a non-linear growth in the number of possible shots due
to packing more agents in the same size space.

5.3 Game Simulation

Here a description of the game is given, along with some features of the client
Artificial Intelligence. The game is confined to a 3D box of dimensions 10x10x10.
Inside the box all the agents are simulated using a pseudo randomized AI. A
visualization of the gamestate is shown in Figure 4(a and b).
RandomAI: When an agent is initialized the agent is given a random starting
position in the game. The agent is also given a random direction that the agent
will travel. From this the agent will navigate along that direction of travel and
bounce off the walls of the game box.

Each client will send an update of its location every 100ms and will update
its own internal state every 100ms as well. The client can updated its state
at faster intervals if desired. Each node will update its status in the kvservice

8

Figure 4: Two rasterized simulation frames. On the left with 10 agents and on
the right with 30 agents.

every 2 seconds. The activityserver will collect the node updates and post the
updated list of active nodes every second. If a node dose not post an update for
a duration of 6 seconds, it is removed from the list of active nodes. In Table 2
the data a node stores to support the system is described. The gamestate takes
up the most amount of memory and it the most frequently updated structure.

Attribute
name

Type Description

gamestate map<string,
Agent>

map of agent identifiers to agent objects
in the game

Nodes map<string,
*net.UDPConn>

map of nodes to the UDP connections
to send messages to the nodes

MyClientName string identifier of the client this node is paired
with

ClientLink *net.UDPAddr UDP address of the client for this node

Connection *net.UDPConn This nodes UDP listening connection

Table 2: Layout of the data stored by each node.

6 Conclusion

We have presented a prototype design for a distributed client-server system
that has a communication structure similar to a peer-to-peer model. The system
supports a real-time online multiplayer game with distributed state. The design
gracefully handles node failure without inducing any game play suspension. The
system demonstrates promise in its ability to scale in the number of nodes with
respect to the consistency of the system.
Limitations The system can suffer from DOS attacks by nodes that have a
desire to reject fire messages. There is also a significant amount of messaging
in the system due to the peer-to-peer structure between nodes.

9

Future Work The scalability of the system could be further improved by using
a spatial partitioning scheme that would limit the number of relevant nodes each
node should keep track of. There are additional methods that could be used to
protect against malicious clients. One example is to encrypt the messages sent
to nodes. This way a malicious client won’t know which messages are being
ignored, in-turn that client’s own information will be out of date and rejected
by other nodes. Another option is to send fire messages to all, or a random
subset, of nodes and have the majority determine the outcome of the action.

References

[Alexander and others, 2003] Thor Alexander et al. Massively multiplayer game
development. Charles River Media, 2003.

[Bernier, 2001] Yahn W Bernier. Latency compensating methods in
client/server in-game protocol design and optimization. In Game Developers
Conference, volume 98033, 2001.

[Claypool and Claypool, 2006] Mark Claypool and Kajal Claypool. Latency
and player actions in online games. Commun. ACM, 49(11):40–45, November
2006.

[Coleman and Cotton, 1995] Scott Coleman and Jay Cotton. The tcp/ip inter-
net doom faq. www.faqs.org, 1995.

[Yahyavi and Kemme, 2013] Amir Yahyavi and Bettina Kemme. Peer-to-peer
architectures for massively multiplayer online games: A survey. ACM Com-
put. Surv., 46(1):9:1–9:51, July 2013.

10

	Introduction
	Overview of Technology
	Multiplayer Network Design

	Methodology
	The Client
	The (Local) Server
	The Activity Server
	The Key-Value Service
	ARM Game
	Protocol and Messaging

	Prototype
	Data Structures
	System Activation
	Registration and Game State Construction
	Move Event Processing
	Fire Event Processing

	Evaluation
	Fault Tolerance
	Scalability vs Consistency
	Game Simulation

	Conclusion

